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ABSTRACT 
Let I" 1 be a fixed absolute norm on R-'. We introduce semi- I - I-summands (resp. 
I ' l  -summands) as a natural extension of semi-L-summands (resp. L-  
summands). We prove that the following statements are equivalent. (i) Every 
semi- l • I-summand is a I" I-summand, (ii) (1,0) is not a vertex of the closed unit 
ball of R 2 with the norm I I. In particular semi-L"-summands are LP-summands 
whenever 1 < p =< co. The concept of semi- I - I-ideal (resp. I" I -ideal) is introduced 
in order to extend the one of semi-M-ideal (resp. M-ideal). The following 
statements are shown to be equivalent. (i) Every semi- I - I-ideal is a l" I -ideal, 
(ii) every I" I -ideal is a I" i-summand, (iii) (0, 1) is an extreme l~oint of the closed 
unit ball of R-" with the norm I' I. From semi-I" Irideals we define semi- I. I- 
idealoids in the same way as semi- I- I-ideals arise from semi-J-l-summands. 
Proper semi- I- [-idealoids are those which are neither semi- I • I-summands nor 
semi- I - I-ideals. We prove that there is a proper semi- I • I-idealoid if and only if 
(1,0) is a vertex and (0, 1) is not an extreme point of the closed unit ball of R" 
with the norm I'l. So there are no proper semi-LP-idealoids. The paper 
concludes by showing that w*-closed semi- I • I-idealoids in a dual Banach space 
are semi- I - I-summands, so no new concept appears by predualization of semi- 
I" I -ideal°ids. 

Introduction 

In recent years a great deal of interest has been devoted to those (linear) 

projections ~- on a Banach space X satisfying either 

IIx tl = Ii )ll + II x - )ll 

o r  

In 

IIx II = Max{H  (x)ll, IIx - 

the former case 7r is called an L-project ion on X and its range is an 
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L-summand of X. In the latter case ¢r is called an M-project ion on X and its 

range is an M-summand of X. It is well known that the polar M" of an 

L-summand (resp. an M-summand) M of X is an M-summand (resp. and 

L-summand) of the dual space X'.  Things do not go as well in the converse 

direction. Following Alfsen and Effros [1] an M-ideal of X is a closed subspace 

M of X such that M ° is an L-summand of X '  and it is well known that there are 

M-ideals which are not M-summands. At a first glance an analogous definition 

might be given for L-ideal, closed subspace M of X such that M ° is an 

M-summand of X'.  Surprisingly this extension of the concept of L-summand is 

trivial, that is L-ideals are L-summands [10; Theorem 1]. Up to date this striking 

asymmetry in the behaviour of the concepts of L-  and M-summand seems to be 

an anecdotic fact whose last reason nobody has explored. This fact will find here 

a coherent explanation when co_nsidered in a wider context. 

Behrends [3] considers Le-summands for 1 < p < ~. An L~-summand of X is 

the range of an Le-project ion on X that is a projection 7r on X satisfying 

IIx [l' --II + IIx -  (x)ll 

(L-summands and M-summands cover the cases p = 1 and p = ~ respectively). 

A closed subspace M of X is an LP-summand of X if and only if M ° is an 

Lq-summand of X '  where 1/p + 1/q = 1 (1 < p < ~) [14; Proposition 2.9]. So 

when p ~  ~ the concept of LP-ideal agrees with the one of LP-summand, and 

M-ideals become an even more isolated exception. 

An extension of L-summands in a different direction is due to Lima [16] who 

introduced semi-L-summands. A definition of semi-L-summand which is equi- 

valent to the one by Lima can be given as follows (see [16; Theorem 5.6]). By a 

semiprojection on X we mean a mapping ¢r from X into X satisfying 

zr(x + zr(y)) = 7r(x)+ 7r(y) and 7r(Ax) = )tlr(x) 

for all x, y in X and scalar )t. A semi-L-summand of X is the range of a 

semi-L-projection on X, that is, a semiprojection 7r on X satisfying 

II x II = II  (x)ll + II x - 

The existence of semi-L-summands which are not L-summands is known in [16]. 

Lima defines a semi-M-ideal as a closed subspace M of X such that M ° is a semi- 

L-summand of X' .  The class of semi-M-ideals is wider than the one of M-ideals. 

The concepts of semi-LP-summand (1 < p ~ ~) and semi-L°-ideal (1 < p < ~) 

can now be introduced in an analogous way but nobody has for the moment  

discussed them (Why?). Actually, as a consequence of the results in this paper 
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semi-LP-summands for p #  1 and semi-L~-ideals for p#oo  are in fact L p- 

summands. So we realize that the existence of semi-L-summands which are not 

L-summands and of semi-M-ideals which are not M-ideals appears to be 

another surprising exception waiting for a coherent explanation. 
The main purpose in this paper is to discuss the above-mentioned concepts in 

a wider and natural context. The above results are then extended as much as 

possible in our context. This gives a much more clarifying picture of the 
situation. 

In a first step we consider those semiprojections 7r on a Banach space X with 

the property that the norm of any element x in X only depends on the norms of 

7r(x) and x - zr(x), that is, we suppose that there is a real function f defined in 
the first quadrant of R 2 such that 

II x II = f ( l l  I1 x - 

As noticed by Evans for linear 7r [12], when the trivial cases 7r = 0 , 1  are 

excluded f must be the restriction to the first quadrant of a normalized absolute 
norm on R 2 (in short: absolute norm) [8; Section 21]. Consequently, given an 

absolute norm I" [ we define a semiprojection (resp. a projection) ,r on X to be a 

semi-J- J-projection (resp. a ]. I-projection) if it satisfies 

I1 x II = I(11  (x)ll, II x - II) I. 

Ranges of semi-l.l-projections (resp. l" I-pr°j ecti°ns) are called semi-J.[- 

summands (resp. J. ]-summands). J. ]-Summands have been discussed in [21] and 

with different notation in [12, 19]. The nonlinear case has been considered in [20, 

221 . 
As announced above for convenient selections of the norm I" I every semi-J. I- 

summand is in fact a I" [ -summand. Our main result in section 1 reads as follows. 

Given an absolute norm [. [ the following statements are equivalent: 

(i) Every semi- I • I-summand is a [. t-summand. 

(ii) (1,0) is not a vertex of the closed unit ball of the Banach space (R z, [- [). 

The proof that (ii) ~ (i) was first given in [20] and independently obtained in 

[22]. The fact that semi-M-summands are M-summands appears in the proof of 

the main result in [13]. The techniques used for the above theorem allow us to 

obtain also some interesting properties of semi-J • [-projections as is, for example, 

the fact that they satisfy the Lipschitz condition 

tl ~ ( x ) -  ~(Y)ll--< II x - y II. 

This has been proved by Yost for semi-L-projections [23]. By using the 
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Bishop-Phelps Theorem we prove that if a Banach space X is a semi-[-[- 
summand of its bidual space X" then X is a semi-L-summand of X". This 
extends a result by Godefroy [15]. 

In a second step we discuss semi- I • I-ideals. A semi-]. I-ideal (resp. I" ]-ideal) of 
X is a closed subspace M of X whose polar M ° is a semi- t • ]*-summand (resp. 

I" I*-summand) of X '  where I" I* is defined by 

t(r,s)l*=Max{]rb+sa[:](a,b)l=l} (r,s ER) .  

The coherence of this definition is justified by the fact that every I" ]-summand is 

a ]. I-ideal. Our main result on semi-]. [-ideals establishes that if (0, 1) i s  an 
extreme point in the closed unit ball of the Banach space (R 2, [. [) then every 
semi-]. I-ideal is a [. [-summand. This improves the result in [21; Corollary 10]. 
We prove also that for each absolute norm ]. ]not satisfying the above condition 
there are semi-]-]-ideals which are not]-]- ideals and I" I -ideals which are not 
I" [-summands. The second part of this assertion was announced in [21; Remark 

12]. The relation between semi- I • ]-summands and semi- I • I-ideals is also clarified 

by showing that if a closed subspace M of X is at the same time a semi- I • I- 

summand and a semi-I" I-ideal of X, then M is a [. I-summand of X. 
In the third section of this paper a new class of subspaces with no classical (L e) 

counterpart appears. A closed subspace M of X is called a semi- I • I-idealoid 

when M ° is a semi- I • [*-ideal of X'. Every I" I -ideal is clearly a semi-[. ]-idealoid, 
in fact M is a I" I -ideal of X if and only if M is at the same time a semi-I" I-ideal 
and a semi- I • I-idealoid of X. If (1,0) is not a vertex of the closed unit ball of 
( R2, ]" I) then every semi- I • I-idealoid is a ]. I-ideal. It was proved by Lima [16; 
Theorem 6.14] that M is a semi-L-summand of X if and only if M ° is a 
semi-M-ideal of X'. We extend this result by showing that every semi- I. I" 
summand is a semi-], t-idealoid and that if (0, 1) is an extreme point in the closed 
unit ball of (R 2, ]. I), then every semi-[. ]-idealoid is a semi-]-]-summand. In view 

of the above facts the concept of semi-LP-idealoid is not relevant, for semi-L- 

idealoids are semi-L-summands, semi-LP-idealoids are LP-summands whenever 

1 < p < o0 and semi-M-idealoids are M-ideals. However for any absolute norm 

I" I such that (1, 0) is a vertex and (0, 1) is not an extreme point of the closed unit 
ball of (R 2, ]" ]) we construct a semi-[. ]-idealoid which is neither a semi-]-]- 

summand nor a semi-[. [-ideal. 
It is a quite surprising fact that the way of consecutive predualizations of the 

concept of semisummand has its end at semiidealoids. More concretely we prove 
that every w *-closed semiidealoid of a dual Banach space is a semisummand, so 

if M ° is a semi-]. ]*-idealoid of X '  then M is a semi- I • I-ideal of X. In particular 
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we obtain that every w*-closed ideal of a dual Banach space is a summand. This 

was asked by Alfsen and Effros [2; Problem 7.2] for M-ideals and affirmatively 

answered by Evans [13] and Lima [16]. 

Therefore, among the three concepts (semisummands, semiideals and 

semiidealoids) to be considered in our general context of absolute norms only 

two (summands and ideals) remain relevant in the linear case. Also only two of 

them (semisummands and semiideals) arise when we restrict our attention to 

classical L" norms. We think that the appearance of semiidealoids adds new 

interest to the consideration of general absolute norms. 

1. Semisummands 

Throughout this paper (X, II. II) (or X if there is no ambiguity) will be a 

Banach spffce over the field K (R or C). A mapping 7r from X into X will be 

called a semiprojection if it satisfies 

(1.1) ~-(x + 7r(y)) = 7r(x) + 7r(y) (x,y E X ) ,  

(1.2) 7r(Ax) = hTr(x) (A E K ,  x ~ X). 

The range 7r(X) of a semiprojection is a subspace of X but its kernel 

Ker ~r -- {x E X : ~'(x) = 0} is only a cone which remains invariant under scalar 

multiplication. The formula x -- I t (x )+  (x - I t ( x ) ) g i v e s  the unique decomposi- 

tion of any vector x as a sum of a vector in ~r(X) and another in Ker 7r. Note that 

a semiprojection ~- is a (linear) projection if and only if Ker ~ is convex. 

Semiprojections appear in a very natural way. Suppose that M is a Chebyshev 

subspace of X, that is for every x in X there is a unique element ~-(x) in M such 

that II x - i s  the distance from x to M. Then ~r (the best approximation 

mapping from X onto M) is a semiprojection. 

By absolute norm we mean a norm [. [ o n  R 2 satisfying 

(1.3) [(r,s)l=[(lrl ,  ls[)l (r,s ER) ,  

(1.4) [(1,0)1 = [ (0, 1) I = 1. 

A number of geometric facts about absolute norms some of which will be needed 

in the sequel appear in [8; Section 21]. 

A semiprojection ~r on X will be called absolute if there is an absolute norm 

I" [such that 

(1.5) Ilxll =l(ll (x)ll,llx- (x)ll)l ix 

Every absolute semiprojection will be supposed nontrivial (1r~ O, 1). Then the 
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absolute norm which appears in (1.5) is clearly unique and the term semi- I. I- 
projection will be applied to ~r in order to emphasize this norm. Ranges of 

absolute semiprojections will be called semisummands (or semi-[" l-summands). 
If an absolute semiprojection is in fact linear we call it an absolute projection (or 

I" l-proj ecti°n) and its range will be a summand (or [. [-summand). 
The following intuitive classification of absolute norms will be useful in our 

study of absolute semiprojections and semisummands. We define the type of an 

absolute norm I" I to be 1 if (1, 0) is a vertex of the unit ball of (R 2, I" I) (the unit 
bali has more than one support functional at (1, 0)), 2 if (1,0) is not a vertex but is 

an extreme point and ~ if (1,0) is not an extreme point. The cotype of I" I is 

defined in the same way but using (0, 1) instead of (1,0). Equivalently, the cotype 

of the absolute norm l" ] is the type of its (also absolute) reversed norm I" I R 

defined by 

(1.6) I(r, s)I R = }(s, r)I (r, s ~ R). 

When restricted to the first quadrant absolute norms are nondecreasing func- 
tions in each variable [8; Lemma 21.2]. This fact together with the following 

iemma which discusses the possibility of strict increasement will give the 

approximation properties of semisummands. 

LEMMA 1.1. Let I" [ be an absolute norm and let rl, r2, s be nonnegative real 
numbers such that r~ < r2 and I(r,, s)] = ](r2, s)l. Then we have [ (r~, s)[ = 
I (r2, s ) l = s and the cotype of I" ] is oo. Conversely, suppose that the cotype of l" I is 
oo. Then there is a positive real number r such that l (r, 1)1 = 1. 

PROOF. We can arrange I(r,,s)l=l(r2, s)l=l and we want s = l .  This 

follows from 

I ( 1 =  I(r,, s)i  = - (r2 ,  S ) + r =  1 - -r= 1 = - I(r~, s)l  + r =  1 r~ 

- - - ~ l ( r ~ , s ) l +  1 - ;  I ( r 2 , s ) l = l .  
r2 

To obtain that the cotype of I" t is ~ it is enough to write 

(0,1) = 1((r2,1) + ( - h, 1)) 

which shows that (0, 1) is not an extreme point of the unit ball of (R 2, I" I)- 

Conversely, if the cotype of I' } is oo we have 

O, 1) = -~((r, s,) + ( - r, s~)) 
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with I (r, s,) I = 1 for  i = 1,2, (r, sl) ~ ( - r, s2) and r => 0. Then  I s, I = 1 for  i = 1,2 

and s T + s 2 = 2 ,  so s l = s 2 = l  and r > 0 .  

If M is a closed subspace of the Banach space (X, I1" II) we deno te  also by I1" II 

the quot ient  norm,  that  is 

II x + M ]1 = Inf{ l l  x - m II : m ~ M } .  

For  x in X we deno te  the set of best  approximat ion  of x in M by 

PM(X)={m E M  : I I x - m l l - - I I x  + MII}. 

Recall  that  M is said to be proximinal when PM (x)  is nonempty  for  all x in X. 

For  m in M and r = 0 we deno te  by BM(m, r) the closed ball in M with centre  at 

m and radius r. 

PROPOSITION 1.2. Let 7r be a semi- I • I-projection on X and M = 7r(X). Let K 
be the greatest nonnegative real number such that I (K, 1)l = 1. Then 

PM(X) = BM(Tr(x), K II x + M II) 

for all x in X. In particular M is a (closed) proximinal subspace of X. Also M is 

Chebyshev if and only if the cotype of I" ] is 1 or 2. 

PROOF. For  x E X  and m E M  we have by the definit ion of semi- I.I- 

pro jec t ion  that 

II x - m II = I(11 ~ ( x ) -  m II, II x - ~ ( x ) l l ) l _ - -  > II x - ~r(x)l l  

so II x + M II = II x - ~(x)ll  for  all x in X. Now assume without  loss of generality 
that II x + M II = 1. Then  

PM(x) = {m ~ M :  IIx - m II = 1} = {m ~ M :  I ( l t c r ( x ) -  m II, i) i  = 1} 

= { m E M :  I I~r(x) -ml l<-K}.  

To conclude the proof  note  that  PM (x)  is a singleton for all x in X if and only if 

K = 0. By the above  lemma this occurs if and only if the cotype  of l" I is 1 or  2. 

Consider  the following questions.  Does  a semisummand M de te rmine  the 

absolute norm I" t for  which M is a semi- I • I-summand? If this is the case, does M 

de te rmine  the semi- I • I-projection whose range is M ?  Both  quest ions have an 

affirmative answer as we show below. 

COROLLARY 1.3. Let M be a semisummand of X. There is only one absolute 
semiprojection on X with range M. 
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PROOF. Let J'/'l and zr2 be absolute semiprojections on X with zr~(X)= 

~'2(X) = M. By the above proposition we have 

P~,(x) = BM(zr,(x), K, II x + M II) = BM(Zr2(x), 1(2 ][ x + M ]1) 

for all x in X and convenient constants K, and K> From the above equality we 

easily deduce that It, = zr2. 

In accordance with earlier terminology we denote by L p the classical absolute 

norm defined by 

(1.7) LP(r , s )=([r[P+ls[P)  '/p (r,s E R) (1 =<p < oo), 

(1.8) L=(r , s )=Max{[r l ,  Is[} ( r , s ~ R )  (p=oo). 

We shall also denote the norm L t by L and the norm L = by M. LP-projections 
are of course the most relevant examples of absolute projection and they have 

been widely discussed (see for example [4], [5]). There is only one precedent of 

our semisummands, namely semi-L-summands introduced by Lima in [16]. By 

[16; Theorem 5.6] a semi-L-summand of X is a Chebyshev subspace of X whose 

best approximation mapping 7r satisfies (1.5) with [. I = L. By Proposition 1.2 this 

is equivalent to our definition. Therefore semisummands generalize semi-L- 

summands in the same way that summands generalize L-summands. In particu- 

lar a coherent definition of semi-LP-summand for p > 1 arises. If semisummands 

were defined as Chebyshev subspaces whose best approximation mapping 

satisfies (1.5) for convenient absolute norm, then M-summands would not be 

semi-M-summands, in fact we should confine ourselves to absolute norms with 

cotype 1 or 2 according to the above proposition. This explains our approach in 

terms of semiprojections. As a consequence of the results in this section we shall 

obtain that semi-LP-summands for p > 1 are in fact LP-summands. 

Behrends [3; Lemma 2.1] proves that if 7r, and 7r2 are LP-projections on a 

Banach space X for the same p and Try(X) = 7rz(X) then 7rl = 7r2. This had been 

proved before by Cunningham in case p = 1 [9; Lemma 2.1] and is known in [16] 

when 7r~ and 7r2 are semi-L-projections. All these results are very particular 

cases of the above corollary. 

We now state the main result in this section. 

THEOREM 1.4. Let I" I be a fixed absolute norm. The following statements are 

equivalent. 
(i) The type of I'[ is 2 or ~. 
(ii) Every semi-]. I-projection is in fact a I" l-proj ecti°n. 
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Our proof of the above theorem involves some ideas on numerical ranges in 

Banach spaces. These techniques have been successfully applied in other 

directions (see [18] for example). More concretely, we shall obtain a formula 

relating the right-hand side derivatives at zero of the convex real functions 

a ~ l l u  + ax 1] and a --'11 u + ,~'(x)ll where 7r is an absolute semiprojection on 
X, u is any norm-one element in 7r(X) and x E X is arbitrary. We briefly recall 

the geometrical relevance of these derivatives. 

For any norm-one element u in X we consider the state space of u, that is, the 

nonempty w*-compact convex subset of the dual space X'  defined by 

(1.9) 

For x ~ X we write 

(1.10) 

D(u) = {f E X '  : f (u)  = Ill II = 1}. 

V(u, x) = {f(x )" f E D(u)}; 

V(u, x) is a nonempty compact convex subset of the scalar field K and simple 

properties like 

(1.11) i A I ~ II x It for all A in V(u,x), 

(1.12) V ( u , x + y ) C V ( u , x ) + V ( u , y )  (x,y @ X), 

(l.13) V(u, Au + tzx) = A + tzV(u, x) (A,/x E K) 

are easily verified. We shall also write 

(1.14) v(u,x)-- Max{IA I" A E V(u,x)} 

and it follows from the above statements that v(u, . )  is a seminorm on X 

satisfying 

(1.15) v(u,x)<=llx II for all x inX. 

It is well known (see [11; Theorem V.9.5] for example) that 

1 
(1.16) MaxRe V(u ,x )=  lira -g(ll u + ,,x II- 1). 

u > 0  

The following elementary lemma deals with the case in which X is R 2 provided 

with an absolute norm. We define the numerical index n(1. I) of the absolute 

norm t" I by 

(1.17) n(l" I) = lira 1(1(1,  a ) ] -  1) = Max V((1,0), (0, 1)). 
, ~ 0 0 ~  
a > 0  
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It is clear that 0=<n(I . ] )=<l .  Also n ( L ) =  1 and n ( L P ) = 0  for l < p = < ~ .  

LEMMA 1.5. Let R 2 be provided with an absolute norm [. I. Then 

(i) v ( ( a , o ) , ( r , s ) ) = [ r - n ( l ' ] ) l s ] , r + n ( l . l ) l s [ ]  fora l l  (r,s) in R 2. 

(ii) I(r, s)l >_-[r t+ n(l" I)1 s I for all (r, s) in R 2. 
(iii) The type of ['1 is 1 if and only if n([ .I)>O. 

PROOF. Part (i) follows almost inmediately from the definition of the numeri- 

cal index and (1.13). From (i) we deduce 

v((1,O),(r,s))= Jr I+ n(I.  [)Is I 

and then (ii) follows from (1.15). For (iii) note that (1,0) is a vertex of the unit ball 

of R 2 if and only if D((1,0)) separates the points in R 2 which turns out to be 

equivalent to the fact that v((1,0),.  ) is a norm on R 2, but in view of the above 
formula for v ((1,0),-) this occurs if and only if n(l- t) > 0. 

Our next Lemma is an elementary extension of (1.16). 

LEMMA 1.6. Let F be a function from a real interval [0, (5 ] into X. Assume that 

II F(O)II = 1 and that F is differentiable at zero. Then the real function G defined in 
[0, 6] by G ( a ) =  IlF(a)ll is differentiable at zero and 

G'(O) = Max Re V(F(O), F'(O)). 

F(a )  = F(O) + aF'(O) + a l l ( a )  where lim,_o 1[ H(a)[[ = O. PROOF. Write 

Then we have 

*~- (11F(0) + ~F'(0)II- 1)-II n(~)ll <= __1 (G(~)- 1) 

--<± (liE(O) + ~F'(0)ll- 1)+ IIH(o~)ll 
19/ 

and the result follows from (1.16) by letting a--+0. 

We go now towards the crucial result in this section. For any nonzero subspace 

M of X we can define a seminorm pM on X by 

(1.18) 

It is clear that 

(1.19) 

(1.20) 

p ~ ( x ) = S u p { v ( u , x ) :  u ~ M ,  Ilu I1 = 1}. 

pM(x) -  IIx II 

pM(m) = II m tl 

for all x in X, 

for all m in M. 
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For h E K  and r=>0 we write E ( A , r ) =  {/z E K :  I / z - h  l=<r}. 

THEOREM ].7. Let 7r be a semi-l" I-projection on X and M = 7r(X). For m in 

M with II m II = 1 and x in X we have 

( i )  V(m, x) = v(m, + E(O, n(1" [ ) l l  x - 

(ii) v(m, x)  = v(m, 7r(x)) + n(I .  I)]1 x - ~(x)]], 

(iii) pM(x)= 11 ~r(x)[I + n([.  [){Ix - ~r(x)[[. 

PROOF. By (1.16) and the definition of semi- I. [-projection we have 

M a x R e  Y ( m , x ) =  lim l ( [ ( I  I m + aTr(x)l [, a [Ix - 7r(x)[[)[- 1). 
a >0 

Consider the function F : [ 0 , 1 ] - - ~ R  2 defined by 

F ( , ~ ) = ( l l m + , ~ ( x ) l l , , ~ l l x - ~ ( x ) [ I )  (0--< a --< 1). 

We use again (1.16) to see that F is defferentiable at zero with 

F'(0) = (Max Re Y(m,  Tr(X )), II X -- 7r(x )l[) 

while it is clear that F(0) = (1,0). Now we apply consecutively Lemmas 1.6 and 

1.5 to obtain 

Max Re V(m, x) = Max Re V((1,0), F'(0)) 

= M a x R e  V(m,  or(x)) + n(I.  I ) l lx  - ~(x)ll 

= M a x R e  (V(m,  rr(x)) + E(0, n(I .  I)ll x - 

Change x by hx with h E K, I h I = 1 to obtain that the compact convex subsets of 
K appearing in (i) have the same support mapping, so they agree (see [6, p. 90]). 

Part (ii) is a direct consequence of (i) and then (iii) follows from (ii) and (1.20). 

The following Corollary is known (see [20; Theorem 10.6], [22]) and it extends 

the particular case in which the absolute norm under consideration is M (see the 

proof of [13; Theorem]). With this Corollary we prove the assertion (i) f f  (ii) in 
our Theorem 1.4. 

COROLLARY 1.8. Let 7r be an absolute semiprojection on X. I f  the type of the 

absolute norm associated to 7r is 2 or ~, then 7r is linear, hence an absolute 

projection on X. 

PROOF. If the type of the absolute norm 1" I is not 1 we have by the last part of 

Lemma 1.5 that n( [ - [ )  = 0 and Theorem 1.7 gives aM(x) = 1t ~-(x)[[ for all x in X 
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where M = ~r(X). So we have that 

Ker 7r = {x E X : pM(x) = 0} 

which is a subspace of X. 

As noticed before the above Corollary implies that semi-LP-summands for 

1 < p  < ~  are L P-summands. This together with Proposition 1.2 gives the 

following characterization of L P-summands. 

COROLLARY 1.9. Given a subspace M of X and a fixed p with 1 < p < oo, the 

following statements are equivalent. 

(i) M is an LP-summand of X, 

(ii) M is Chebyshev and the best approximation mapping lr from X onto M 

satisfies 

for all x in X. 

IIx ti P - - ! ! - ( x ) t l  p + IIx - - ( x ) l l  P 

Up to this moment no concrete example of semisummand has been given. Of 

course classical LP-spaces are rich in LP-summands. Without leaving the context 

of classical Banach spaces the following could be an elementary example of 

I" ]-summand for nonclassical absolute norm I" I. 

For each real number 3' with O< 3, < 1 consider the absolute norm I" Iv 

defined by 

l(r, s)t~ =Max{Isl,lrl+3"lsl}. 

Let X~ be the subspace of 13 defined by the equation 

X2 -- X3 = 2TXl.  

It is not difficult to verify that R(0, 1, 1,) is a l" I~ -summand of X~. What about 

semi-[. I-summands which are not I • [-summands? The easiest example of a semi- 

L-summand which is not an L-summand is R(1,1,1) in 13. With a bit of 

additional effort and without leaving the frame of classical Banach spaces we can 

show some elementary examples of semi-I'l-summands which are not I 'l- 

summands for nonclassical absolute norms I'l.  Concretely, for each 3' with 

0 < 3' < 1 there is a subspace X~ of l~ such that R(1, 1, 1, 0, 0, 0) is a semi- I • Iv- 

summand but is not a I" I~-summand of X~. Just take for X~ the subspace of 16 

defined by the equations 

2~/x4 - x~ + xz = 23'x5 - x: + x3 = 2 3 ' x 6  - x 3  + X1 = 0. 
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The following is a straightforward consequence of Corollary 1.8, Lemma 

1.5(iii) and Theorem 1.7(iii). If 7r is an absolute semiprojection on X which is not 

linear and M = 7r(X), then pM is an equivalent norm on X and 7r becomes a 

semi-L-projection on the Banach space (X, pM). So we can only get semisum- 

mands which are not summands by renorming Banach spaces with semi-L- 

summands which are not L-summands. Our next theorem shows that this 

renorming process can always be carried over. We need the following property 
of absolute norms. 

LEMMA 1.10. Let l" ] be an absolute norm and write n = n(I.  [). There is a 
unique absolute norm !. [+ such that 

l ( a , b ) l = l ( t a l + n l b t ,  lbl) l  + 

]:or all a, b in R. 

PROOF. Define a continuous real function ~b on [0,1] by 

1 1 
q b ( t ) = [ ( 1 - ( n + l ) t , t ) l  fo r0 -< t  < -  ~b(t)= t for < t < l .  

= n + l '  n + l =  = 

The restrictions of qb to the intervals [0, 1/(n + 1)] and [1/(n + 1), 1] are convex 

functions, so to prove that ~b is convex we take 0 =< t~ < 1/(n + 1) < h < 1 and we 

must verify that 

+1 
= ~ 6(t , )  ~ q~(h). 

This is clear when (tl + t2)/2 >= 1/(n + 1). Otherwise we have 

¢ b ( ~ ) = l ( 1 - ( n + l )  h+t~ 

< 1  1 < 1  1 
= ~  1(2- (n  + 1)(t,+ t 2 ) , h ) [ + ~ h = ~  I ( 1 - ( n  + 1)t , ,h)l+~t2 

where the last inequality follows from 

0 = 2 - ( n  + 1)(h+ h ) =  < 1 - ( n  + 1)t,. 

We have clearly ¢b(t)>=t for 0_-<t<l .  By Lemma 1.5(ii) we have also 

4 ) ( t )  > 1 - t for 0 <= t <= 1/(n + 1) and the inequality is clear when 1/(n + 1)_-< t _--- 

1. So 4~ satisfies the condition 

Max{1-t,t}<=d~(t)<=l (0-<_ t =< 1). 
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By [8; Lemma 21.3] there is a unique absolute norm ]. I + such that 

I ( 1 - t , t ) l + = c b ( t )  (0<= t_<-- 1). 

To prove that I" r+ satisfies the required condition it is enough to apply its 

defining formula with 

Jbr < ~  
t = l a  l+(n  + l ) l b  l = n  + l 

where a, b E R, [ a [ + b [> 0. The uniqueness of I" ! + is easy and will not be 

needed below, so we leave it as an exercise. 

THEOREM 1.11. Let ol " ] and r. ] be arbitrary type 1 absolute norms, zr a semi- 

ol" I-projection on X and M = 7r(X). Define 

IIIx lll = l (m'(x )' n° lix + Mii) (x ~ X) 

where no = n(ol " I) and n = n(] . I). Then Ill" III is an equivalent norm on X ana 
becomes a semi-I . I-projection on the Banach space (X, II1" lit). When 01" I = L we 

get 

] IIx+MII (xeX) IIIx Ill-- IIx II, n 

while i l l . l =  L we have 

NI x III = pM(x) (x ~ x) .  

P~ooF. It is clear that ]]1" III is a seminorm on X satisfying 

IIIxlll<-(]+no/n)llxll for all x in X. 

By Theorem 1.7(iii) we have also 

IIx II<=(1/no)pM(x)<-(1/no)lllx III for all x inX, 

so IIq" III is an equivalent norm on X. 
Another application of Theorem 1.7(iii) and the definition of I" I + given in the 

above Lemma give us 

Now we put or(x) and x -  ¢r(x) instead of x in the above equality to obtain 

no 
IIl~(x)lll =ll~(x)ll  and ! l lx-~(x) l l l  =~-IIx  +MII 
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so that the equality reads 

I[I x Ill = P(IN ~ ( x ) I l l ,  III x - '~ (x )  PII) I 

and we have proved that ~- is a semi- I. I-projection on (X, II1" Iit). In the 

particular case 0t" I = L we have no = 1 and pM = I1" 11. On  the other hand if I • ] = Z 
it is easy to verify that I" r = M and n = 1, so 

Illxllr--Max{pM(x),nollx+Mll}=p (x) for all x in X. 

REMARK 1.12. Let (x ,  II1" rll) be the Banach space resulting from the above 

Theorem. If we apply to (X, 111" I]1) the same Theorem interchanging 01" ] and I" I 

we get again the initial Banach space (X, It" II). 

Now the proof of Theorem 1.4 has been concluded. By Corollary 1.8 we can 

only have semi- I • I-summands which are not ]. I-summands when the type of the 

absolute norm l" l is 1. Conversely, given a type 1 absolute norm l" ]we can 

construct a semi- I • ]-summand which is not a I" I -summand, for it is enough to 

apply the renorming process of the last Theorem to a space with a semi-L- 

summand which is not an L-summand. All known examples of semi-L- 

summands which are not L-summands appear in real Banach spaces. It is an 

open question whether or not every semi-L-summand in a complex Banach 

space is in fact an L-summand (see [25]). In view of the above comments the 

analogous question for general semisummands reduces to semi-L-summands. 

This is an example showing that Theorem 1.11 reduces up to a point the study of 

semisummands to the one of semi-L-summands. Next we give another applica- 

tion of this idea. 

It is clear that every absolute projection ~r on X is continuous with norm one, 

so it satisfies 

ltTr(x)- zr(y)ff-<- Ilx - y II for all x, y in X. 

It has been proved by Yost [23; Theorem 1.3] that semi-L-projections satisfy the 

above inequality. We now extend this result to absolute semiprojections. 

COROLLARY 1.13. Let 7r be an absolute semiprojection on X. Then 

= IIx - y II forallx,  y i n X .  

PROOF. By Corollary 1.8 and the above comments we can suppose that the 

type of the absolute norm associated to 7r is 1. Then by Theorem 1.11 we have 

that ¢r is a semi-L-projection of the Banach space (X, pM) where M = or(X). By 

applying (1.20), [23; Theorem 1.3] and (1.19) we obtain 
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II ~ - ( x ) -  ~ ( y ) l l  = p ~ ( ~ ( x ) -  ~-(y)) ~ oM(x - y ) ~  IIx - y II. 
Let X be complex and denote by X~ the underlying real Banach space. Every 

semisummand of X is clearly a semisummand of XR. The converse is not true (R 

is an L:-summand of CR). It was proved in [21; Corollary 7] that when the 

euclidean norm L 2 is excluded every summand of X~ is a summand of X. This 

was obtained as a consequence of the fact that for [. 1# L 2 every I" ]-summand in 

a real or complex Banach space is invariant under any bounded linear operator 

whose algebra numerical range has empty interior in K [21; Theorem 6]. In fact 

Partington [19] had proved the complex version of this theorem in a more 

general form. Next we obtain the extension to semisummands of that result. 

COROLLARY 1.14. Let M be a semi- I • ]-summand of X and T a bounded linear 

operator on X. If I" I ~ L2 and the algebra numerical range of T has empty interior, 

then T (M)  C M. 

PROOF. By Corollary 1.8 and [21; Theorem 6] we can suppose that the type of 

1" l is 1, that is, n(l" I )>0 .  Let 7r be the semi- I • I-projection on X with range M 

and let us fix m in M with II m II = 1. The first part of Theorem 1.7 for x = T(m)  

gives 

Vgm, T(m))  = V(m, ¢rTgm)) + E(O, n(l" I)11 T ( m ) -  II). 

Since V(m, T(m))  is included in the algebra numerical range of T (see [7; p. 82]) 

we have that V(m, T(m))  has empty interior. This implies 7rT(m) = T (m)  as 

required. 

COROLLARY 1.15. Let X be complex. The semisummands of X are the same as 

the ones of XR, provided that the euclidean norm L 2 is excluded. 

PROOF. Analogous to the one of [21; Corollary 7] by using the above 

Corollary instead of [21; Theorem 6]. In this way one obtains that every 

semisummand M of Xa is a (complex) subspace of X. This and Proposition 1.2 

give that the absolute semiprojection from XR onto M is a (complex) semipro- 
jection on X. 

Godefroy [15; Theorem 6] has proved that if a Banach space is a summand of 

its bidual space, then it is an L-summand. We conclude this section with an 

independent proof of this result and at the same time we consider the nonlinear 

case. We denote by .Ix the canonical imbedding of a Banach space X into its 

bidual space X". 
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LEMMA 1.16. pj,~x~(F) = [[ F [[ for all F in X". 

PROOF. For x in X with II x II = 1 and f in D(X, x) we have that J~,(f) belongs 

to D(X", Jx(x)). Now apply the Bishop-Phelps Theorem (see [8; §16]) to obtain 

that OJ,~x~(F)>--II F II for all F in X". 

THEOREM 1.17. Assume that J~(X) is a semisummand of X". Then Jx(X) is 

a semi-L-summand of X". 

PROOF. Use the above Lemma and Theorem 1.7(iii). 

2. Semiideals 

Together with an absolute norm I" [ we can consider another one [. t* defined 

by 

(2.1) I(r,s)t * : S u p { I r b + s a  I: [(a,b)l  : 1}. 

It is easy to verify that if M is a [. I-summand of X, then its polar 

M " = { f E X ' : f ( m ) = O  for a l l m i n M }  

is a I" I *-summand of the dual space X'. In [21] the t" [-ideals of X were defined 

as those closed subspaces M of X such that M" is a I" [*-summand of X', so that 

every I" [-summand of X is a [" [-ideal of X. The converse is not true when 

I" I-- M, that is, there are M-ideals which are not M-summands (see [1]). Lima 

[16] defines a semi-M-ideal of X to be a closed subspace M of X such that M <' is 

a semi-L-summand of X'. The concept of semiideal which we now introduce 

includes both I" I -ideals and semi-M-ideals. 

A closed subspace M of X will be called a semi- f • [-ideal of X if M ° is a semi- 

I" [*-summand of X'. We say that M is a semiideal (respectively an ideal) of X if 

there is an absolute norm I' [such that M is a semi-[. I-ideal (respectively a 

I" I-ideal) of X. In view of Corollary 1.3 the absolute norm ]. ]is unique. 

It is clear that every [. [-ideal (hence every I" [-summand) of X is a semi-  I • I- 

ideal of X. However semi-[. I - summands  need not be semi-[. [-ideals. In fact let X 

be a Banach space with a semi-L-summand M which is not an L-summand. If M 

were a semi-L-ideal of X then M ° would be a semi-M-summand of X', that is 

(Corollary 1.8) an M-summand of X'. Then by [10; Theorem 1] M would be an 

L-summand of X, a contradiction. Thus semisummands and semiideals are 

different generalizations of summands. The relation between summands and 

semiideals will be completely clarified in this section just as the relation of 

summands with semisummands was clarified in section 1. The first step will be to 
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prove that under certain condition on the absolute norm I" [ every semi- I • I-ideal 
is in fact a I" [-summand. 

LEMMA 2.1. Let I" ( be an absolute norm. The type of I" I* is 1 if and only i[ the 
cotype of [. I is ~. 

PROOF. Each element (a, b) in (R 2, I" I) can be identified with the continuous 
linear functional on (R-', I" I*) given by (r, s ) ~  rb + sa. With this identification in 
mind the states of (1,0) in (R 2, I" I*) are those elements in R z of the form (x, 1) 

with I(x, 1)t = 1. So the type of f't* is 1 if and only if there is a x # 0  such that 

I (x, 1) ] = 1. By Lemma 1.I this occurs if and only if the cotype of 1" 1 is ~. 

From the above Lemma the relation between the type of I" I* and the cotype 

of I" 1 can be completely clarified. Suggestively, if the type of I" I* is p and the 
cotype of ]. ]is q, then 1/p + l /q = 1 with the usual conventions. 

THEOREM 2.2. Assume that the cotype of the absolute norm I" [ is not ~. Then 
every semi-I" I-ideal is a I" I -summand. 

PROOF. If M is a semi- 1 • I-ideal of X, then M" is a semi- I • I*-summand of X'. 

By the above Lemma the type of I" I* is not 1, so by Corollary 1.8 M () is a 

I" I *-summand of X' and M is a I" I -ideal of X. By [21; Corollary 10] M is a 

i" l -summand of X. 

The above Theorem improves [21; Corollary 10] where under the same 

assumption on the norm I" I it was obtained that every I" [-ideal is a 1" [-summand. 
Our Theorem implies that semi-LP-ideals for 1 N p < oo are LP-summands so 
improving the results in [10; Theorem 1] and [14; Proposition 2.9]. The 
assumption that the cotype of 1" 1 is not oo can not be dropped, for there are semi- 
M-ideals which are not M-ideals (even less M-summands) and M-ideals which 
are not M-summands. Next we give an example of semi-[. I-ideal for nonclassical 

absolute norm I" I. For each real number 7 satisfying 0 < 7 < 1 let X~ be the 

subspace of 14' defined by the equation 

and let M b e  defined by 

v ( x ,  + x~ + x 3  = (1 - v ) x ,  

XI + X2+ X3= X4=O. 

It is not difficult to verify that M is a semi- I • Iv-ideal o~ X~ for all 7, the absolute 

norm I" Iv being defined by 

I(r ,s) i ,  =Max{Is  l, I r l + T l s i }  (r,s ER).  
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Moreover, M is not a I" I~ -ideal of X~. Our next Theorem will show that the 

assumption on the norm 1" I in Theorem 2.2 is in fact necessary. More concretely, 

for each cotype 00 absolute norm 1" I there are semi-l-l-ideals which are not 

I" I-ideals and I-I-ideals which are not I • I-summands. 

THEOREM 2.3. Let M be a semi-M-ideal  of (X, II" II) and I" I a cotype 00 
absolute norm. Define 

IIIxlll=l(n(I.l*)llxll, llx+MII)l (xEX). 

Then Ill" III is an equivalent norm on X and M is a semi- I • l-ideal of  (X, II1" Ill). 

Also M is a l" I -ideal of (X, !11" Ill)/f and only if M is an M-ideal  of (X, I1" II) and 
M is a 1. I-summand of (x, III. III) ~f and only if M is an M-summand  of (X, I1" II). 

PROOF. By Lemma 2.1 the type of I" 1" is 1, that is (Lemma 1.5) n(l" I*)>0. 
So if we define 

II(x,y+m)ll=~(n(I.l*)llxll, lly+mll)l (x,y ~ x )  

we obtain a norm on the product space Y = X x (X/M).  The mapping 4, defined 

by 

4,(x)=(x,x+M) (x~X) 

is linear and injective, so Ill III is a norm on x with which 4' is isometric. The 

straightforward inequalities 

n(I. I*)II x II <-- 111 x III <= (1 + n(I .  I*))ll x II 

show that II1" Ill is equivalent to II" II. 
Now we consider the natural identification of the dual space Y' of Y with the 

product space X'  x M". Since X x {0} is clearly a I" ]-summand of Y we deduce 
that the norm of Y' is then given by 

r( ' )1 (a) ]](f, g)l] = ]] g t], ~ ]] f ][ ( f e X ' , g E M ° )  • 

(Observe that we use the same notation for each norm and its dual one.) 

Consider 4, as an isometric linear bijection from (X, Ill-III) onto 4,(X). Then 

the transpose mapping 4,' is an isometric linear bijection from 4,(X)' onto 

(X', Ill" Ill). Also 4,(X)' can be identified with the quotient space Y'/cl,(X) ° -  
(X'  x M°)/4,(X) °. This gives that the mapping tO : (X' x M")/4,(X)°---~, X '  defined 

by 

tO( ( f ,g )+4 , (X)° )=f  + g  ( f E X ' , g ~ M  °) 
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is an isometry. Since we have easily 4~(X) '~= {(g, - g ) : g  E M"} we obtain in 

view of (a) the following formula for the norm II1" ][I on X' :  

(b) Ill f Ill = III ¢ , ( ( f ,o )+  ~(x)")III = I [ ( f ,o)+ ,:t,(x)"ll 

= Inf{ll(f + g , - g ) l i : g E M " } = I n f  I l g t t , ~ ] ] f + g  

Recall that M is a semi-M-ideal of (x,  ll. 13, so let ~- denote the semi-L- 

projection from (X', II II) onto M °. Then we have 

IIf + g II = II It(f) + g II + I1 f - It(f)I] 

for all f in X'  and g in M °. In this way (b) reads 

In particular (choose g = - l r f f ) ) ,  

1 

We shall prove that this inequality is actually an equality. To this end we fix g in 

M ° and apply Lemma 1.10 to the absolute norm I" ]* with 

a = l l g l ]  and b-n(~.l,)(ll~(f)+gll+llf-~(DII) 
and we obtain 

~r 1 

p (,, o~,,, + ,,,-.-,~,,,. ~ ,,,-~-,~,,,t I "~ 

Thus we have proved that 

+t,, ~,,1,)1 *+ 
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It is enough to put in the above formula rr(f) and f - ~-(f) instead of f to obtain 

Ill f Ill = [(IH ~'(f)HI, H l f -  ~r(f)[H)[*. 
This shows that 7r is a semi- I - ]*-projection on (X', HI" ]11), so M" is a semi-]. I*- 

summand of (X', ]11" II1), that is, M is a semi-]. ]-ideal of (X, II1" I1[). 
Note that the absolute semiprojection onto M" remains unchanged in the 

above renorming process, so M is a ]. ]-ideal of (X, Ill" ]11) if and only if it is an 

M-ideal of i X, [1" ]])- It is almost clear that if M is an M-summand of (X, II ]l) 
then M is a [-t-summand of (x,[H.tll). Assume to conclude that M is a 

I" [-summand of (X, IH" Ill) and let P be the corresponding I • I-projection. Then 

1 - P* is a I" ]*-projection on (X', Ill" IH) with range M", so we have by Corollary 

1.3 that 1 - P' -- 7r and this implies that 7r is linear and is an L-projection on 

(x' , l l ' l l) ,  hence P is an M-projection on (X, I1" II) and M is an M-summand of 

(x ,  I1 II). 

REMARK 2.4. The formula (2.3) which appears in the proof of the above 

Theorem agrees with the one given by Theorem 1.11 in order to turn the 

semi-L-projection 7r into a semi- I • ]*-projection. So we have proved that when 

the renorming process in Theorem 1.11 is applied to a dual Banach space with a 

w*-closed semi-L-summand, then the new norm is again dual. 

Our next goal will be to prove that the renorming process in the above 

theorem is reversible so that every semi-]. ]-ideal must arise by renorming a 

space with a semi-M-ideal as done in the Theorem. We need the following result 

on absolute semiprojections on dual Banach spaces. 

LEMMA 2.5. Let 7r be a semi-]. I-projection on a dual Banach space X. Let 

{y,,} be a net satisfying [lye l[ -< 1 and y~ E K e r  Tr for all ot and suppose that {y~} 

converges in the w*-topology to x + y with x in 7r(X) and y in Ker ~. Then we 

have 

IIx li÷ ni l .  I)lly II= nil" I). 

PROOF. For arbitrary t > O  the net {tllxllyo+x} converges in the w*- 

topology to (1 + t l[x [[)x + t l]x 11 y. So from 

Iltllx Ilyo + x  II--li[Ix II, tllx I1 Ilyo II)f--<llx I1 lil ,  t)l 

and the w*-lower semicontinuity of the norm of X we deduce 

Ilil ÷ tllx ]t)x ÷ tllx Ity II ~ IIx II 1(1, t)l. 
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On the other  hand we have by Lemma 1.5 that 

It (1 + t l[ x I[)x + t II x II y I = [((1 + t [I x II)[I x II, t II x II I[ y [I)[ 

=> (1 + t I[ x II)ll x II + n(I.  [)t [[ x II I[ y [I 

so we conclude that 1 + t ll x II ÷ tn ([. I)l[ y [[ =< [(1, t)[, that is, 

[Ix [l+ n(l" [)[ly [[ =< 1(1' t) l -  1 
t 

and the result follows from (1.17) by letting t---~0. 

THEOREM 2.6. Let M be a semi-[. I-ideal of X. Then there is an equivalent 
norm on X with which M becomes a semi-M-ideal of X. 

PROOF. By Theorem 2.2 we can assume that the cotype of I" I is oo, so that the 

type of [ .  [* is 1 (Lemma 2.1). Since M ° is a semi- I • I*-summand of X '  we have by 

Theorem 1.11 that  M ° is a semi-L-summand of the Banach space (X',  pMo) and it 

is enough to prove that p~, is the dual norm of a norm on X. To this end we must 

show that the closed unit ball of (X',  pMo) is closed in the w*-topology. 

Let  {h.} be a net in X '  satisfying pMo(h~)<= 1 for all a and suppose that  {ha} 

converges to h in the w*-topology. We must show that  pMo(h) = < 1. Let  7r be the 

semi- I • [*-projection onto M ° and write fo = 7r(h.), g~ = h. - f~. By Theorem 1.7 

we have 

(a) lifo [I + n(l" [*)H g~ II = Pu°(h-) --< 1 

so lifo II -< 1 and 11 g. II--< l / n ( [ .  I*) for all a. For  a convenient  subnet we can now 

suppose {fo }---> f, {g, }---> fo + g in the w *-topology with f, fo ~ M °, g E Ker  7r and 

that {lifo II}--' a, {11 go II}~ b. We have clearly. 

h = f + f o + g  (b) 

and 

(c) 

and from (a) we deduce 

(d) 

IIfll-<_a, 

a + n ( [ . l * ) b < - l .  

For arbitrary e > 0 and large enough a we have II g~ II-<- b ÷ ~ and we can apply 

the above L e m m a  to the net {g~/(b + e)} to obtain 

[t foil + . ( l  I*)ll ~ II-  -< , , ( l  I*)(b + ~) 
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so letting e---> 0 we have 

(e) II/011 + n(l" t*)ll g II--< n(I. t*)b. 

Now from (b), (c), (d), (e) and Theorem 1.7 we deduce 

PM°(h) = Ill + foil + n(l" J*)lt g II--< Ilfll + II/oil + n(l" I*)ll g II 

<=a+n(l.l*)b <-_l, 

as required. 

REMARK 2.7. We point out for later use that the renorming processes carried 

out in Theorems 2.3 and 2.6 are each the converse of the other. To verify this it is 

enough to look at the corresponding dual norms (see Remark 2.4) and to take 

into account Remark 1.12. Note the close relation between the renorming 

processes carried out in this and the first section. The point is that when 

Theorem 1.11 is applied to a dual Banach space X with a w*-closed semisum- 

mand M, then the resulting new norm II1" lit is dual. 

Lima [16; Corollary 6.6] has proved that semi-M-ideals are proximinal 

subspaces and [17; Theorem 1.2] has studied the best approximation mapping 

onto a semi-M-ideal. Next we extend this result to arbitrary semiideals. The 
following Lemma is an improvement of Lemma 2.1 

LEMMA 2.8. Let l" I be an absolute norm. Then 

n(l" I*) = Max{/3 =>0 : 1(/3, 1)t = 1}. 

P~OOF. In the Banach space (R 2, I" I*) we have as in the proof of Lemma 2.1 

D((1 ,O))  = {(/3, 1) :1(/3,1)]  = 1}. 

Write a = Max{/3 _-> 0 : 1(/3, 1) 1 = 1}. By Lemma 1.5 we have that n(l" I*) belongs 
to V((1, 0), (0,1)) so (n(I.  I*), 1) belongs to D((1, 0)) and we have n(l" [*) <-- a. On 

the other hand, it is clear that (a, 1) belongs to D((1,0))  so we have again by 
Lemma 1.5 that a _-< v((1, 0), (0, 1))= n(l" I*). 

COROLLARY 2.9. Let M be a semi-[. I-ideal of X. Then M is a proximinal 
subspace of X and 

B~'(0, 2n( I • 1")11 x +MII)CPM(x) -P~(x)CB~(O,2n( I .  I*)11 x + MII ) 

holds for all x in X. 

PROOF. In view of Theorem 2.2 and Proposition 1.2 we can suppose that the 
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cotype o f ] .  l is ~. By Theorem 2.6 there is an equivalent norm Ill" III on X such 

that M is a semi-M-ideal of (X, II]" III). By Remark 2.7 we have 

Ilxll=l(n(l'l*)lllx[ll, Illx +MHI)I (x~X). 

If we put in the above equality x + m instead of x with x arbitrary and m in M 

and take greatest lower bounds of both members with m running along M, we 

obtain 

Ilx + M I I =  I]]x +MIl l  I(n(] "]*),1)1 = II]x +MIl l  

where we have used the above Lemma. 

For x in X and m in M we have 

II x - m II = [(n (1" ]*)II] x - m II], III x + M I11)1 

so we can use again the above Lemma to obtain that II x - m Ii = II x + m II if and 

only if Ill x - m III = III x + M III. Therefore the sets of best approximation of x in 

M for the norms If" II and 111" Ill agree. Then the result follows from [17; Theorem 

1.2] by taking into account that [Im II = n(l" I*)lll m III for all m in M. 

Recall that semisummands and semiideals are different generalizations of 

summands. The relation between both generalizations is clarified by the 

following result which is another application of the renorming Theorems in this 

section. 

THEOREM 2.10. Let M be a semi-I" [-sumrnand and a semi- l • I-ideal of X. 
Then M is a I" I-summand of X. 

PROOF. By Theorems 1.4 and 2.2 we can suppose that the type of l" I is 1 and 

that its cotype is oo. To avoid ambiguities let tl" II, denote the norm of X and let 

l l  I1= be the equivalent norm on X given by Theorem 2.6 such that M is a semi- 

M-ideal of ( x ,  I1" II0. For i = 1,2 let Vi, vi and p~  be defined by (1.10), (1.14) and 

(1.18) for the corresponding norm I111,. Recall that 

Ilxil ,=l(n(I.[*)llxll2, tlx + MIi2)I 

in view of Remark 2.7. Let m E M with II m II, = 1 and x u X be fixed and note 

that IIn(l" I*)m tl2 = 1. For all a > 0  we have 

(a) tl m + •x IIi = ](n (l" I*)!1 rn + ~x 112, c~ II x + m 112)I- 

Consider the mapping F : [0, 1] ~ (R'-, I" l) defined by 

f ( o  0 = (n (1" I*)1t m + ,~x 112, ~ II x + M 112)- 



VOI. 51, 1 9 8 5  SEMISUMMANDS AND SEMIIDEALS 57 

We have clearly [ F(0) I = [(1,0)l = 1 and by (1.16) F is aifferentiable at zero with 

(b) F'(O) -- (Max Re V2(n(I- l*)m, n(I.  I*)x), Ilx + M tl~_) 

so we can apply Lemma 1.6 to F and in view of (a) and (1.16) we obtain 

Max Re V,(m, x) = Max Re V(F(O), F'(0)) 

= MaxRe[V2(n(I. I*)m, n(I. I*)~x)+ E(O, n(I. I)llx + M t12)] 

where for the last equality we have used Lemma 1.5. As in the proof of Theorem 

1.7 we deduce 

V,(m,x)= V,_(n(j. I*)m,n(l'l*)x)+E(O,n(]" l)llx + M [[2) 

hence 

v,(m, x ) =  v2(n(]" [*)m, n(I.  I*)x) + n(I.  [)11 x + M 112. 

Now let m run along the unit sphere of (M, H" [I,) so that n(l" ]*)m runs along the 

unit sphere of (M, [[. IL') and we obtain 

(c) p~'(x) = n([. l*)p~'(x)+ n(l" l)ll x + M 112. 

Let zr be the semi-[. [-projection from (X, I1" [[,) onto M. By Theorem 1.7 and 

Proposition 1.2 we have 

(d) p~'(x) = II ~-(x)[[, + n([.  I)[[x + Mtl,. 

As in the proof of Corollary 2.9 we have [I x + M [I, = II x + M [[2 so (c) and (d) give 

us  

I1 = n(l" ]*)p~(x) 
and we have proved that zr is linear. 

3. Semiidealoids  

In this third section we deal with those closed subspaces M of our Banach 

space X such that M ° is a semi- I • ]*-ideal of X'. Such a subspace will be called a 

semi- I • I-idealoid of X. We say that M is a semiidealoid of X when there is a 

(unique) absolute norm [. [ such that M is a semi- l • [-idealoid of X. Although for 

many absolute norms I" I (including the classical L p norms) semi- I • l-idealoids are 

either semi-I" [-summands or semi-[. I-ideals (see the next Theorem), in our 

general context the concept of semiidealoid provides a new interesting class of 

subspaces of a Banach space. Actually we will prove the existence of 
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semiidealoids which are neither semisummands nor semiideals. Thus the concept 
of semiidealoid is probably the most suggestive one in this paper. The following 
Theorem summarizes the relation between the new concept and the above 

discussed ones. 

THEOREM 3.1. Let ]" [ be an absolute norm. Then: 

(i) Every semi- I • [-summand of X is a semi- I • 1-idealoid of X. 
(ii) A closed subspace of X is a semi- I • I-ideal and a semi- I • I-idealoid of X if 

and only if it is a [. I-ideal of X. 
(iii) I f  the type of I" I is not 1, then every semi- I • I-idealoid of X is actually a 

{. {-ideal of X. 
(iv) I f  the cotype of ]. ] is not 0% then every semi- I • ]-idealoid of X is actually a 

semi-{. I-summand of X. 

PROOF. (i) Let M be a semi- I- I-summand of X and note that in view of 

Theorem 1.4 we can suppose that the type of ]" ] is 1. By Theorem 1.11 pM is an 
equivalent norm on X such that M is a semi-L-summand of (X, pM). Then by 
[16; Theorem 6.14] M oo is a semi-L-summand of (X", p~) where p~ denotes the 

bidual norm of #M. Now we can apply Theorem 1.11 to obtain that if we write 

p ~(F (F E X") 

then Ill" ]][ is an equivalent norm on X" such that M oo is a semi-I- l-summand of 

(X", I11" Ill). The proof of (i) will be concluded by showing that HI'Ill = {I'll- By 
Remark 1.12 (or directly from Theorem 1.7 (iii)) we have that 

1 

So the mapping 

O ~ ( x + M ) )  ÷ ( x ~ X ) .  

x ---> (x, 1 n ( ~ ( x  + M))  

is a linear isometry from (X, I1" II) into X × ( X / M ) ,  the norm in the last space 

being given by 

](pM(X),pM(y +M)) I  + (x,y E X ) .  

Now the bitranspose mapping 
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is a linear isometry from (X", I1" [[) into X" × (X"/M~'),  the norm in the last space 

being given by 

[ ( p ~ F ) , p ~ ( G + M ° ° ) ) [  + (F, G E X " ) .  

So we have shown that 

for all F in X", as required. 

(ii) Predualize Theorem 2.10. 

(iii) The cotype of I" I* is not o0 (Lemma 2.1), so if M is a semi- I • I-idealoid of 
X, then M ° is a I" I*-summand of X'  (Theorem 2.2) and M is a I" I -ideal of X. 

(iv) The linear part of this assertion is Theorem 9 in [21], the proof of which 

remains true without changes in our eventually nonlinear case. 

RE~ARKS 3.2. (i) For the classical L p norms our Theorem assures that semi- 

L-idealoids are semi-L-summands (this is known in [16; Theorem 6.14]) and that 

semi-L"-idealoids for p > 1 are L"-ideals (in fact L~-summands unless p = ~ in 

view of Theorem 2.2). 

(ii) The restrictions on the absolute norm in statements (iii) and (iv) of the 

above Theorem are essential. For if the type of I" I is 1, then by Theorem 1.4 

there are semi- I • I-summands (so semi- I • I-idealoids)which are not I" I °summands 

(so not I" I -ideals in view of Theorem 2.10), and on the other hand, if the cotype 

of I" I is ~, then by Theorem 2.3 there are I" I -ideals (so semi- I • I-idealoids) which 
are not [. I-summands (so not semi- I • [-summands in view of Theorem 2.10). 

After Theorem 3.1 the only remaining question about the relation between 

semisummands, semiideals and semiidealoids is the existence, for a type 1 and 

cotype ~ absolute norm I" I, of semi- I • [-idealoids other than semi- I • I-summands 
and I" I -ideals- The rest of this section is devoted to answering this question. 

For each real number 3' with 0 <= "y _-< 1 we consider the "hexagonal" absolute 

norm ]. I, defined by 

r(a, b)lv = Max{I b l, I a ] + 3' [ b [} (a, b ~ R). 

Note that [. 1o= M and 1. I1 = L, while for 0 <  7 < 1 the type 1 and cotype oo 

absolute norms I" Iv will play in our situation a similar role to the ones played by 

L and M in sections 1 and 2 respectively. 

THEOREM 3.3. Let 0<= 3' <- 1 be a fixed real number and let M, N be 

semi- I • I~-idealoids of the Banach spaces X, Y respectively. Define in X × Y a 
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norm by 

]1 (x, y)H = Max{ II x + M II + [I Y + N H, [I x II + 3' II y + NII, [[ Y H + y II x + M I[}- 

Then M × N is a semi-[. ]~-idealoid of X × Y. Also M × N is a semi-[. [~- 

summand (resp. I" I~ -ideal) of X × Y if and only if M and N are semi- I • [,- 
summands (resp. [. ]~-ideals) of X and Y respectively. 

PROOF. (i) First we prove that if M and N are semi-I" [~-summands of X and 

Y respectively, then M × N is a semi-[, l~-summand of X × Y. More concretely, 

let 7rM (resp. ¢rN) be the semi-[. [~-projection from X (resp. Y) onto M (resp. N) 

and define 

~r(x, y)  = (~'M(x), ~ , , (y) )  (x ~ x ,  y ~ Y). 

Then 7r is clearly a semiprojection on X ×  Y whose range is M × N .  A 

straightforward computation shows that ~r is a semi-[-[~-projection (the norm on 

X × Y has been happily found to this end). 

(ii) Now let M and N he arbitrary semi- I • ]~-idealoids of X and Y respec- 

tively. Then M OO and N °° are semi-[. [,-summands of X" and Y". By (i) we have 

that M OO × N °° is a semi-[. ],-summand of X" × Y", the norm on X" × Y" being 

defined by 

l[ (F, G)II = Max{I] F + M °°l[ + 1[ G + Nooll, II F II + ~ II ~ ÷ Woo II, II G II + ~ II F + MooII}. 

But the bidual space of X x Y is identified in a natural way with X" x Y" with 

the above norm and in this identification the bipolar of M x N is just M Oo x N ~, 

so M x N is a semi-[. [~-idealoid of X x Y. 

(iii) Assume that M x N is a semi-[. [~-summand of X x Y. In order to prove 

that M and N are semi-[. [~-summands of X and Y, let zr be the semi-[. [,- 

projection from X x Y onto M x N, fix x in X and write zr(x,0) = (mo, no). It is 

enough to show that no = 0. Since [I (x, 0) + M x N II = II x + M II we have that 

PM×N((x,O)) = {(m, n) E M × N : II (x - m, - n)ll--II x + M II} 

= { ( m , n ) E M x N  : [[x-mll=llx + Mll, llnll<-_(1-r)llx + MII) 

= e M ( x )  × BN(0, (1 - ~')11 x + M II). 

On the other hand we have by Proposition 1.2 that 

eMx~((x,O)) = BM×~((mo, no), (1 - y)[lx + M [I) 

= B,,,(mo, (1 - r ) l l x  + MII)×  B ~ ( n o , ( 1  - ~) l lx  + MII)- 

Compare the above two equalities to obtain no = 0, as required. 



Vol. 51, 1 9 8 5  SEMISUMMANDS AND SEMIIDEALS 61 

(iv) If M x N is a I" Iv-ideal of X × Y, then M oO x Noo is a I" [,-summand of 

X "  x Y"  and the corresponding [. [~-projection is w *-continuous. It follows from 

(iii) that Moo is a [" Iv-summand of X" and that the [. Iv-projection from X" onto 

M oO is w*-continuous. Therefore M is a ]. I~-ideal of X and the same argument 

applies to N. 

REMARK 3.4. The above Theorem together with previous results give the 

existence for each 0 < y < 1 of a Banach space with a semi-[. [,-idealoid which is 

neither a semi-[-[~-summand nor a ]. Iv-ideal. By Theorem 1.4 there is a Banach 

space X with a semi- I • I~-summand M which is not a ]. [~-summand and by 

Theorem 2.3 there is a Banach space Y with a ]-Iv-ideal N which is not a 

[. ]~-summand. By Theorems 3,1 and 3.3 M × N is a semi-]. [~-idealoid of X x Y 

with suitable norm. If M x N were a semi- I • I~-summand of X x Y, then by 

Theorems 3:3 and 2.10 N would be a [. ]~-summand of Y, a contradiction. If 

M x N were a I" Iv-ideal of X × Y, then the same arguments show that M would 

be a I" [,-summand of X, a contradiction. 
In what follows we use a renorming process to obtain for each type 1 and 

cotype ~ absolute norm [. [semi-[ .  [-idealoids which are neither semi-[-l- 

summands nor l • l-ideals. 

For the next Lemma the definition of a seminorm pM associated to any 

nonzero subspace M of a Banach space X should be recalled (see section 1). In 

the proof a space will be considered as a subspace of two different Banach spaces 

and we emphasize if necessary this fact by writing p(xM) instead of pM. It is clear 

that if M C Y C X ,  then p(Y,M)(y) = p(x.M)(y) for all y in Y. 

LEMMA 3.5. Let M be a semi- I • I-idealoid of X. Then 

and 

t,,,, (x)  = pMoo(1x (x))  

t ]x l l - -=l(pM(x) , I lx+MDI ÷ f o r a l l x i n X .  

PROOF. Let ~" be the semi- I. ]-projection from X" onto M °°. For x in X and 

m in M with II m II = 1 we have by Theorem 1.70) that 

v(m, x)= V(Jx(m),1x(X))= V(1x(m), ~1x(x)) + E(0, n(l" I)11 x + M II) 

SO 

p~(x) = p ( × . ~ ) ( x )  = p,~,.,~))(~r/~(x)) + n(]" 1)[[ x + M II 

= p(~,~M))(~1~(x)) + ~([.  [)llx +Mll .  
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Since the natural identification of M '~° with M" maps Jx(M) onto JM(M) it 

follows from Lemma 1.16 that 

p,~'~'.lx<M~(~Jx(x )) = II ~Jx(x ) It. 

Thus we have 

pM(x) = l[ rrJx(x)II + n([.  I)I[ x + M [[ 

and the equality pM(X)= pMoo(Jx(x)) follows from Theorem 1.7(iii). 

The equality IlxlI=I(pM(x), I I x + M I I ) r  follows from the first part of the 
Lemma and the fact that this equality is true in case M is a semi- I • [-summand of 

X (apply Theorem 1.7(iii)). 

COROLLARY 3.6. Let [. I be a type 1 absolute norm and M a semi-[. [-idealoid 
of X. Then pM is an equivalent norm on X. Let p ~ denote the bidual norm of pu on 
X". Then p'Moo(F) <= p ~(F) for all F in X". Moreover, if pMoo(F) < p ~ F )  holds for 
some F in X", then F satisfies the inequality p ~(F) < (n ([. [) + n ([. [*))II F + M OO II. 

PROOF. Since Moo is a semi-[. I-summand of X" we have by Theorem 1.11 

that puOO is an equivalent norm on X" and the first equality in the above Lemma 

gives us that pM is an equivalent norm on X. 

Fix F in X" and let {xo } be a net in X satisfying pM (X~) <= p ~(F) and such that 

the net {Jx(x~)} converges to F in the w*-topology of X". By the w*-lower 
semicontinuity of the norm pMoo (see Remark 2.7) and the first equality in the 
above Lemma we have that 

#M0o(F) =< lim Inf{pMoo(Jx (x~))} = lim Inf{pM (X~)} ----< p ~(F). 

By a similar argument to the one used in the proof of the first part of Theorem 

3.1 we can bidualize the second equality in Lemma 3.5 to obtain 

II F l[ = I (P ~{F), I1F + M oo I[) I ÷ (F E X"). 

On the other hand we can directly apply to M oo and X" the second part of 

Lemma 3.5 and we obtain 

IIF}I = I(p~o(F), II F + Mooll)l + ( F E X " ) .  

Then if F E X" is such that p~oo(F)< p ~ F )  we can apply Lemmas 1.1 and 2.8 

and we obtain 

p M F )  =< n(l" [÷*)11F + Moo II. 

The desired inequality follows from the fact that n(l" I+*) = n(f" I )+n ( l "  I*) 

which can be easily verified by using Lemma 1.10. 
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THEOREM 3.7. Let ol" land  [" I be type 1 absolute norms satisfying n*/no<= 
n*/n wheren*=n(ol ' l*) ,  no= n(o[" I), n = n ( I . [ ) a n d n *  = n(I .  I*). L e t M b e a  
semi-ol" l-idealoid of X and define 

I[[xlll-- (PM(x)' n°[[x + M[I) (x~X). 

Then II1" Ill is an equivalent norm on X and M is a semi-J . lidealoid of (X, Ill" Ill). 
Moreover, if M is a semi-o[. [-summand (resp. o[" [-ideal) of (X, I[" [I), then M is a 
semi-I .'[-summand (resp. l" I -ideal) of (g, Ill" III). 

PROOF. Since Moo is a semi-ol" [-summand of X" it follows from Theorem 1.11 
that if we write 

then q is an equivalent norm on X" such that M oo is a semi- I • [-summand of 

(X",q).  So for the first part of the Theorem it is enough 
lllIFt[l=q(F) for all F in X". 

By bidualizing the defining equality of I1[" lit we have that 

and the equality 
above Corollary 

to show that 

I( F[II = p~(F), no IIF+ Mooll ( F E X " )  
n 

lit F lit = q(F) is clear when pMoo(F) = p~(F). Otherwise by the 
and our assumption that n*/no<= n*/n we have that 

, .  no pM°°(F) < p~(F) <-<- (no+ n*)HF + Moo[I <= (n + n )-~ IIF + M®II 

+,-  no ---n([. )n IIF+M°°ll 

and it is enough to apply Lemma 2.8 to obtain that [11F I[[- q(F). 
If M is actually a semi-o[. [-summand of (X, [[. II), then M is a semi-[, i- 

summand of (X, Ill" Ill) (Theorem 1.11), while if M is a o1" I-ideal of (X, l[" !t) then 
we can apply Theorem 1.11 to obtain that M oo is a [-[-summand of (X", I1[" I[[) 
with w*-continuous [. [-projection and therefore M is a [. [-ideal of (X, [[1" [[I). 

REMARKS 3.8. (i) Assume in the above Theorem that n~/no = n*/n. Then 

we can apply again the Theorem to the Banach space (X, Ill" I[[) resulting from it 
by interchanging the absolute norms 0[" I and I" [. In this way we reencounter  the 
initial Banach space (X, I1 II). To see this it is enough to apply Remark  1.12 to X" 
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and M °°, once we know by the above proof that the norm Ill" Ill on x "  which 
appears when we apply to it Theorem 1.11 is just the bidual norm of the norm 

I1[" Ill on  x defined in the above Theorem. 
(ii) For shortness a semi- I • ]-idealoid will be called "proper"  if it is neither a 

semi- I • I-summand nor a [" I-ideal. Note that a proper semi- I • [-idealoid can not 

be a semi-I • [-ideal by the second part of Theorem 3.1. The same Theorem shows 

that if either the type of I " I is not 1 or its cotype is not ~, then there are no proper 
semi- I • I-idealoids. Now we can exhibit a proper semi- I • I-idealoid for each type 1 

and cotype ~ absolute norm ]. ]. In fact, let I" ] be such an absolute norm and let 

,,]-] be the hexagonal norm [. r~ where y = n/(n + n*). Since 0 <  y < 1 there is a 
Banach space with a proper semi- t • I~-idealoid (Remark 3.4). Since no = y and 

n* = 1 - T, we have that n*/no = n*/n so Theorem 3.7 and the above Remark 

are applicable and they yield the desired Banach space with a proper semi- I • l- 

idealoid. 

4. The concluding Theorem 

For the purpose of this last section a brief summary of the relation between 

the three kinds of subspaces discussed in this paper should be in place. The 

first generation of subspaces is the one of semisummands whose linear parts are 

the summands. Unless the absolute norm [" I is of type 1 every semi-]-]-summand 

is a l" I -summand (Corollary 1.8). Conversely for each type 1 absolute norm ]. 1 

there are semi-]-I-summands which are not I" I -summands (Theorem 1.4). The 

second generation is the one of semiideals (closed subspaces whose polars are 
semisummands) whose linear parts are the ideals (closed subspaces whose polars 

are summands). The intersection of the first and second generation is the linear 

part of the first one (Theorem 2.10). Unless the cotype of the absolute norm I" t is 

every semi- I • I-ideal is a I" I -summand (Theorem 2.2). Conversely, for each 
cotype oo absolute norm [" I there are semi- I • [-ideals which are not I • ]-ideals and 

[. I-ideals which are not I • I-summands (Theorem 2.3). The third generation is the 

one of semiidealoids (closed subspaces whose polars are semiideals). The third 

generation includes the first one (Theorem 3.1(i)) and intersects the second one 

in its linear part (Theorem 3.1(ii)). Unless the type of r. ] is 1 (resp. the cotype is 

~) every semi- I- l-idealoid is a I" I -ideal (resp. a semi- I - I-summand), so proper 

semi- I • I-idealoids can only occur when the type of [. I is 1 and its cotype is 

(Theorem 3.1(iii) and (iv)). Conversely, we have proved that such a proper semi- 

I" I -idealoid always exist when the type of I" I is 1 and its cotype is ~ (Remark 

3.8(ii)). 
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In order to complete the picture we conclude this paper by showing that the 

fourth generation (those closed subspaces whose polars are semiidealoids) 
agrees with the second one (the semiideals). More suggestively, every w*-closed 

semiidealoid of a dual Banach space is a semisummand. This is agreeable news 

because it shows that the procedure of obtaining new concepts by consecutive 
predualization of the one of semisummand is achieved with the third generation. 

As a consequence we obtain that every w*-closed ideal of a dual Banach space is 

a summand so that the first two generations are enough in the linear case. This is 

the reason why the concept of ]-]-ideaioid was not introduced. 

THEOREM 4.1. Let M be a closed subspace of a Banach space X and let I" ] be 
an absolute norm. Then M is a semi-]. I-ideal of X if and only if M ° is a 
semi-]. ]*-idealoid of X' .  

PROOF. The "only if" part follows from Theorem 3.1(i). If the cotype of [" { is 

not oo the "if" part follows from Theorem 3.1(iii) and [21; Theorem 9], so we 

assume that the cotype of I" l is oo. 

Let M ° be a semi-]-]*-idealoid of X'.  Then M oo is a semi-]. I-ideal of X" and by 

Theorem 2.6 there is an equivalent norm IIl'tll on x "  such that Moo is a 

semi-M-ideal of (X", II]" I]1). Moreover  (Remark 2.7) this new norm is related 

with the old one by the equality 

(a) IlFll=l(n*lllFIll,  II[ F + M°° [[I) I (F  E X") 

where n * =  n(].]*). As in the proof of Corollary 2.9 we have ]] lF+Moolt]= 

II F + M °°11 for all F in X", so 

(b) ItFIl=l(n*lllFIIl, llF+Mooll)t (FEX") .  

Write q ( x ) =  II]/x(x)l[], Then q is an equivalent norm on X satisfying 

(c) I l x l l = l ( n , q ( x ) , l l x + M l ] ) t  ( x E X )  

(apply (b) with F = J× (x)). Bidualize equality (c) to obtain 

(d) liE 1] = I(n*q(F), l iE+ M°°ll)l 

(the bidual norm of q on X" is again denoted by q). From (a) and Lemma 2.8 we 

have that 

(e) I]fll  I(n*,l)l IIIFIIl= IIIrlll for all F in X". 

In particular ]]x ] ] ~ q ( x ) f o r  all x in X, so 
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(f) I IFI I~q(F)  for all F in X". 

By applying Lemmas 1.1 and 2.8 we obtain from inequalities (b), (d), (e) and (f) 

that 

IIIF]II=q(F) for all F in X". 

In this way we have proved that M oo is a semi-M-ideal of (X", q). In view of 

Remark 3.2(i) we deduce that M is a semi-M-ideal of (X, q). 

From (c) we deduce that 

llx+MIl=l(n*q(x+M),llx+Mll)t for all x in X, 

and Lemma 2.8 gives q(x + M)<= 11 x ÷ M II, the converse inequality being clear 

from q(x)  >= i{ x II. Now (c) reads 

}}xll=l(n*q(x),q(x +M))l (xEX) 

and it is enough to apply Theorem 2.3 to the Banach space (X, q) which contains 

M as a semi-M-ideal to conclude that M is a semi- I • I-ideal of (X, I1" II). 

COROLLARY 4.2. Let M be a closed subspace of a Banach space X and let I" I 

be an absolute norm. Then M is a I" t-ideal of X if and only g M ° is a I" I*-ideal of 
X r" 

CONCLUDING REMARK. If follows from the results in this paper that the 

concept of semiidealoid becomes a new interesting topic in Geometry of Banach 

Spaces. The authors have obtained some relevant results on semiidealoids. For 

example they are proximinal subspaces. This can be proved by using Theorem 

3.7 which reduces the problem (as in Remark 3.8(ii)) to the case of semi-[. I,- 

idealoids (where I ' l ,  is an hexagonal absolute norm) which are just those 

semiidealoids satisfying the l~-ball property (see 124]). Actually a stronger result 

can be obtained. Concretely the assertion of Corollary 2.9 is true for 

semiidealoids. We intend to deal with these and further topics in a subsequent 

paper. 
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